第2024章 AI人物观点:算力十问,大模型将横扫所有垂直行业(2 / 2)

就边缘与终端算力运用的问题,邬院士认为,当边缘/终端具有70亿参数以上的推理能力时,边缘/终端可离线进行推理任务,目前手机可支持130亿参数,2024 年还会出现支持千亿参数的手机。当边缘/终端仅具有10亿参数的推理能力时,需要与云端协同提供智能能力。邬院士提出,单终端算力小,数以亿计的终端算力集合就非常可观,但跨终端的协同计算是否可行值得商榷。</p>

关于异地算力节点的协同,邬院士认为,将算力集群扩展到跨域,多个异地的算力节点共同承担一个计算任务,实时性的交互要求光传输系统无损和确定性时延,任何丢 包和抖动都无法保证计算效率;在异属异构的场景下异地 协同计算的实施可操作性更是挑战。他强调,集约化建设大型算力节点比分布异地协同能够显着提升能效和算力效 率,东数西算和数据灾备都需要在异地算力枢纽间建立广 域连接,但这仅是算力任务的转移而不是异地实时协同计算。</p>

关于算网协同,邬院士认为,算力与网络往往属于不同的运营主体,跨运营商的协同调度也有管理难题。而且网络通常并不感知所承载的数据属性。当前,首先要厘清算网协同的标准与方法,发挥IPv6的分段选路、SRV6作为算网协同统一承载协议的作用,通过编程空间实现云网/算网的融通。</p>

就如何解除中小企业使用算力的顾虑,邬院士建议,政府站台主导建设面向中小企业的云智平台,降低企业利用算力的门槛和对安全的担心。</p>

——总结·点评——</p>

沈向洋博士和邬贺铨院士的观点分别从大模型的发展趋势和算力的多维度问题出发,为理解AI技术演进和基础设施建设的现状与未来提供了深刻洞察。</p>

沈向洋观点概览:</p>

沈向洋认为,大模型(large language models)将在所有垂直行业中扮演颠覆性角色,强调了模型规模的重要性。他指出,未来的通用大模型将以万亿参数为常态,而针对特定行业的模型则可能达到千亿参数级别,即便是企业内部使用的模型也将达到百亿参数量级。沈向洋的观点预示着大模型技术不仅将继续推动自然语言处理等领域的进步,还将广泛渗透至医疗、金融、教育等各行各业,成为推动数字化转型的关键力量。</p>

邬贺铨观点概览:</p>

邬贺铨院士的《算力十问》报告则从算力的需求、分配、效率、协同等多个角度进行了深入探讨。他指出,不同类型的算力(超算、通算、智算)需求因地区而异,强调了存算比优化的重要性,并区分了不同类型计算任务对内存与外存的不同依赖。邬贺铨还讨论了边缘计算与终端算力的潜力,提出随着终端设备推理能力的增强,边缘计算与终端协同将成为趋势,但也面临跨终端协同计算的挑战。关于算力节点的异地协同,他认为虽然存在技术与管理上的挑战,但算网协同和标准化工作对于提升整体效能至关重要。针对中小企业,邬贺铨建议政府应发挥作用,通过构建云智平台来降低算力使用门槛,增强安全性信心。</p>

两位专家的观点综合展示了AI技术发展与算力基础设施建设的广阔前景及面临的实际挑战,指明了技术创新与政策支持对于推动行业发展的关键作用。</p>